Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Isolated Saccharomyces cerevisiae vacuoles contain low-molecular-mass transition-metal polyphosphate complexes.

Identifieur interne : 000462 ( Main/Exploration ); précédent : 000461; suivant : 000463

Isolated Saccharomyces cerevisiae vacuoles contain low-molecular-mass transition-metal polyphosphate complexes.

Auteurs : Trang Q. Nguyen [États-Unis] ; Nathaniel Dziuba [États-Unis] ; Paul A. Lindahl [États-Unis]

Source :

RBID : pubmed:31210222

Descripteurs français

English descriptors

Abstract

Vacuoles play major roles in the trafficking, storage, and homeostasis of metal ions in fungi and plants. In this study, 29 batches of vacuoles were isolated from Saccharomyces cerevisiae. Flow-through solutions (FTS) obtained by passing vacuolar extracts through a 10 kDa cut-off membrane were characterized for metal content using an anaerobic liquid chromatography system interfaced to an online ICP-MS. Nearly all iron, zinc, and manganese ions in these solutions were present as low-molecular-mass (LMM) complexes. Metal-detected peaks with masses between 500-1700 Da dominated; phosphorus-detected peaks generally comigrated. The distribution of metal:polyphosphate complexes was dominated by particular chain-lengths rather than a broad binomial distribution. Similarly treated synthetic FeIII polyphosphate complexes showed similar peaks. Treatment with a phosphatase disrupted the LMM metal-bound species in vacuolar FTSs. These results indicated metal:polyphosphate complexes 6-20 phosphate units in length and coordinated by 1-3 metals on average per chain. The speciation of iron in FTSs from iron-deficient cells was qualitatively similar, but intensities were lower. Under healthy conditions, nearly all copper ions in vacuolar FTSs were present as 1-2 species with masses between 4800-7800 Da. The absence of these high-mass peaks in vacuolar FTS from cup1Δ cells suggests that they were due to metallothionein, Cup1. Disrupting copper homeostasis increased the amount of LMM copper:polyphosphate complexes in vacuoles (masses between 1500-1700 Da). Potentially dangerous LMM copper species in the cytosol of metallothionein-deficient cells may traffic into vacuoles for sequestration and detoxification.

DOI: 10.1039/c9mt00104b
PubMed: 31210222
PubMed Central: PMC7175454


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Isolated Saccharomyces cerevisiae vacuoles contain low-molecular-mass transition-metal polyphosphate complexes.</title>
<author>
<name sortKey="Nguyen, Trang Q" sort="Nguyen, Trang Q" uniqKey="Nguyen T" first="Trang Q" last="Nguyen">Trang Q. Nguyen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA. Lindahl@chem.tamu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Texas A&M University, College Station, TX 77843-3255</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dziuba, Nathaniel" sort="Dziuba, Nathaniel" uniqKey="Dziuba N" first="Nathaniel" last="Dziuba">Nathaniel Dziuba</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lindahl, Paul A" sort="Lindahl, Paul A" uniqKey="Lindahl P" first="Paul A" last="Lindahl">Paul A. Lindahl</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA. Lindahl@chem.tamu.edu and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA. Lindahl@chem.tamu.edu and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31210222</idno>
<idno type="pmid">31210222</idno>
<idno type="doi">10.1039/c9mt00104b</idno>
<idno type="pmc">PMC7175454</idno>
<idno type="wicri:Area/Main/Corpus">000419</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000419</idno>
<idno type="wicri:Area/Main/Curation">000419</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000419</idno>
<idno type="wicri:Area/Main/Exploration">000419</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Isolated Saccharomyces cerevisiae vacuoles contain low-molecular-mass transition-metal polyphosphate complexes.</title>
<author>
<name sortKey="Nguyen, Trang Q" sort="Nguyen, Trang Q" uniqKey="Nguyen T" first="Trang Q" last="Nguyen">Trang Q. Nguyen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA. Lindahl@chem.tamu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Texas A&M University, College Station, TX 77843-3255</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dziuba, Nathaniel" sort="Dziuba, Nathaniel" uniqKey="Dziuba N" first="Nathaniel" last="Dziuba">Nathaniel Dziuba</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lindahl, Paul A" sort="Lindahl, Paul A" uniqKey="Lindahl P" first="Paul A" last="Lindahl">Paul A. Lindahl</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA. Lindahl@chem.tamu.edu and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA. Lindahl@chem.tamu.edu and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Metallomics : integrated biometal science</title>
<idno type="eISSN">1756-591X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coordination Complexes (analysis)</term>
<term>Copper (analysis)</term>
<term>Iron (analysis)</term>
<term>Manganese (analysis)</term>
<term>Phosphorus (analysis)</term>
<term>Polyphosphates (analysis)</term>
<term>Saccharomyces cerevisiae (chemistry)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Vacuoles (chemistry)</term>
<term>Zinc (analysis)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexes de coordination (analyse)</term>
<term>Cuivre (analyse)</term>
<term>Fer (analyse)</term>
<term>Manganèse (analyse)</term>
<term>Phosphore (analyse)</term>
<term>Polyphosphates (analyse)</term>
<term>Saccharomyces cerevisiae (composition chimique)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Vacuoles (composition chimique)</term>
<term>Zinc (analyse)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Coordination Complexes</term>
<term>Copper</term>
<term>Iron</term>
<term>Manganese</term>
<term>Phosphorus</term>
<term>Polyphosphates</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Complexes de coordination</term>
<term>Cuivre</term>
<term>Fer</term>
<term>Manganèse</term>
<term>Phosphore</term>
<term>Polyphosphates</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Vacuoles play major roles in the trafficking, storage, and homeostasis of metal ions in fungi and plants. In this study, 29 batches of vacuoles were isolated from Saccharomyces cerevisiae. Flow-through solutions (FTS) obtained by passing vacuolar extracts through a 10 kDa cut-off membrane were characterized for metal content using an anaerobic liquid chromatography system interfaced to an online ICP-MS. Nearly all iron, zinc, and manganese ions in these solutions were present as low-molecular-mass (LMM) complexes. Metal-detected peaks with masses between 500-1700 Da dominated; phosphorus-detected peaks generally comigrated. The distribution of metal:polyphosphate complexes was dominated by particular chain-lengths rather than a broad binomial distribution. Similarly treated synthetic FeIII polyphosphate complexes showed similar peaks. Treatment with a phosphatase disrupted the LMM metal-bound species in vacuolar FTSs. These results indicated metal:polyphosphate complexes 6-20 phosphate units in length and coordinated by 1-3 metals on average per chain. The speciation of iron in FTSs from iron-deficient cells was qualitatively similar, but intensities were lower. Under healthy conditions, nearly all copper ions in vacuolar FTSs were present as 1-2 species with masses between 4800-7800 Da. The absence of these high-mass peaks in vacuolar FTS from cup1Δ cells suggests that they were due to metallothionein, Cup1. Disrupting copper homeostasis increased the amount of LMM copper:polyphosphate complexes in vacuoles (masses between 1500-1700 Da). Potentially dangerous LMM copper species in the cytosol of metallothionein-deficient cells may traffic into vacuoles for sequestration and detoxification.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31210222</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1756-591X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2019</Year>
<Month>07</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Metallomics : integrated biometal science</Title>
<ISOAbbreviation>Metallomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Isolated Saccharomyces cerevisiae vacuoles contain low-molecular-mass transition-metal polyphosphate complexes.</ArticleTitle>
<Pagination>
<MedlinePgn>1298-1309</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c9mt00104b</ELocationID>
<Abstract>
<AbstractText>Vacuoles play major roles in the trafficking, storage, and homeostasis of metal ions in fungi and plants. In this study, 29 batches of vacuoles were isolated from Saccharomyces cerevisiae. Flow-through solutions (FTS) obtained by passing vacuolar extracts through a 10 kDa cut-off membrane were characterized for metal content using an anaerobic liquid chromatography system interfaced to an online ICP-MS. Nearly all iron, zinc, and manganese ions in these solutions were present as low-molecular-mass (LMM) complexes. Metal-detected peaks with masses between 500-1700 Da dominated; phosphorus-detected peaks generally comigrated. The distribution of metal:polyphosphate complexes was dominated by particular chain-lengths rather than a broad binomial distribution. Similarly treated synthetic FeIII polyphosphate complexes showed similar peaks. Treatment with a phosphatase disrupted the LMM metal-bound species in vacuolar FTSs. These results indicated metal:polyphosphate complexes 6-20 phosphate units in length and coordinated by 1-3 metals on average per chain. The speciation of iron in FTSs from iron-deficient cells was qualitatively similar, but intensities were lower. Under healthy conditions, nearly all copper ions in vacuolar FTSs were present as 1-2 species with masses between 4800-7800 Da. The absence of these high-mass peaks in vacuolar FTS from cup1Δ cells suggests that they were due to metallothionein, Cup1. Disrupting copper homeostasis increased the amount of LMM copper:polyphosphate complexes in vacuoles (masses between 1500-1700 Da). Potentially dangerous LMM copper species in the cytosol of metallothionein-deficient cells may traffic into vacuoles for sequestration and detoxification.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nguyen</LastName>
<ForeName>Trang Q</ForeName>
<Initials>TQ</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA. Lindahl@chem.tamu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dziuba</LastName>
<ForeName>Nathaniel</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lindahl</LastName>
<ForeName>Paul A</ForeName>
<Initials>PA</Initials>
<Identifier Source="ORCID">0000-0001-8307-9647</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA. Lindahl@chem.tamu.edu and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R35 GM127021</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Metallomics</MedlineTA>
<NlmUniqueID>101478346</NlmUniqueID>
<ISSNLinking>1756-5901</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056831">Coordination Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011122">Polyphosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42Z2K6ZL8P</RegistryNumber>
<NameOfSubstance UI="D008345">Manganese</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D056831" MajorTopicYN="N">Coordination Complexes</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008345" MajorTopicYN="N">Manganese</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011122" MajorTopicYN="N">Polyphosphates</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014617" MajorTopicYN="N">Vacuoles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31210222</ArticleId>
<ArticleId IdType="doi">10.1039/c9mt00104b</ArticleId>
<ArticleId IdType="pmc">PMC7175454</ArticleId>
<ArticleId IdType="mid">NIHMS1576903</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry (Mosc). 2002 May;67(5):592-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12059781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1995 Mar 1;228(2):337-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7705347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e37434</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22616008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 24;279(52):54221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15494390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2012 Sep;12(6):617-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22591314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2016;892:33-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26721270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1992 Dec;119(6):1469-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1334958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2011 Feb;3(2):195-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21212869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Apr;180(7):1962-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9537401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Int. 1983 Apr;6(4):481-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6679720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2016 Feb;44(1):234-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26862210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Apr 24;324(5926):513-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19390046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Nov;20(21):7893-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 3;276(31):29515-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1997 Jul 15;152(2):293-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9231423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 23;279(17):17289-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14966138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2014 May 13;53(18):2926-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24785783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1998 Mar;62(1):230-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9529893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Nov 25;260(27):14464-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3902832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Mar;47(5):1185-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12603727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Nov 29;50(47):10275-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22047049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):775-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8542-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11447286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2014 Jun 24;53(24):3940-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24919141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 May 21;328(5981):1043-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20489023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 17;279(51):53584-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1987 Dec 7;926(3):205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3318934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2015 Apr;24:1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25589044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2013 Aug;13(5):463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23663411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2008 Sep;8(6):877-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18647178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1988 Apr 11;231(1):253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3282922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys Biomol Struct. 2006;35:277-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16689637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 28;282(39):28619-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2014 Dec 1;127(Pt 23):5093-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25315834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Jun;170(6):2683-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3131304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Oct 10;289(41):28129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25160625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Feb 17;586(4):289-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22285489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2018 Jun 20;10(6):802-817</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29808889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Apr;148(4):1787-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9560393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15335-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 27;282(30):21629-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17553781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Appl Microbiol. 2017 Jan 25;62(6):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27829585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 31;274(53):38061-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10608875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2017 May 1;130(9):1625-1636</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28302909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Dec 1;8(1):1879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29192218</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Nguyen, Trang Q" sort="Nguyen, Trang Q" uniqKey="Nguyen T" first="Trang Q" last="Nguyen">Trang Q. Nguyen</name>
</region>
<name sortKey="Dziuba, Nathaniel" sort="Dziuba, Nathaniel" uniqKey="Dziuba N" first="Nathaniel" last="Dziuba">Nathaniel Dziuba</name>
<name sortKey="Lindahl, Paul A" sort="Lindahl, Paul A" uniqKey="Lindahl P" first="Paul A" last="Lindahl">Paul A. Lindahl</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000462 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000462 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31210222
   |texte=   Isolated Saccharomyces cerevisiae vacuoles contain low-molecular-mass transition-metal polyphosphate complexes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31210222" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020